OU Libraries logo

Philosophy

Philosophy

 

Exhibit items on the subject of philosophy.

Exhibit Items

The Great Art of Light and Shadow  Kircher, Athanasius (1646)

A “camera obscura” (“dark room”) consists of a box or container in which light enters via a small hole and projects an image on an opposite wall. The image will be reversed and upside-down, but its proportions will be preserved.

0 Mathematical Principles of Natural Philosophy, 1713  Newton, Isaac (1713)

1 Mathematical Principles of Natural Philosophy, 1729  Newton, Isaac (1729)

This is the first English translation of Newton’s masterwork in physics. The Copernican idea that the Earth moves as a planet required a thorough revision of physics. Galileo undertook this task in his Discourse on Two New Sciences, published 80 years after Copernicus.

1 Ecstatic Journey through the Heavens  Kircher, Athanasius (1660)

Six chief world systems were debated in Galileo’s world: • Ptolemaic: All planets revolve around the central Earth. Geocentric. • Platonic: Like the Ptolemaic, except switches the positions of Venus and Mercury. Geocentric. • Cappellan or Egyptian: Venus and Mercury revolve around the Sun.

1 The Divine Plato  Plato,  (1491)

In his dialog entitled The Timaeus, Plato taught that the cosmos is constructed from regular geometrical figures known as the Pythagorean solids. Wherever one finds an emphasis upon mathematical demonstrations in science, one may credit Plato and the Pythagoreans.

1 The City of God  Augustine,  (1489)

The frontispiece shows Augustine in his study. Augustine taught that the language of Scripture was accommodated to the understanding of ordinary readers and therefore not well-suited to teach the theories of natural science.

2 The Rose of Orsini  Scheiner, Christoph (1630)

Scheiner, a Jesuit astronomer, eventually published the definitive work of the 17th century on sunspots, in which he accepted Galileo’s argument that sunspots “move like ships” on the surface of the Sun.

2 On Comets  Hevelius, Johann (1668)

The frontispiece shows three views of the paths of comets: the Aristotelian theory that they consist of vapors beneath the Moon (left); Kepler’s theory that comets move in straight lines (right); and Hevelius’ view that they originate in the outer regions and descend in a parabolic trajectory...

2 Works in Greek, vol. 1  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

2 Meteorology, 1556  Aristotle,  (1556)

In a discussion of optical effects of the atmosphere, Aristotle here addresses the formation of a halo around the Moon. This is one of the most interesting uses of mathematics in all of Aristotle’s writings.

2 On Animals  Aristotle,  (1476)

This is the first publication of Aristotle’s biological works. While Plato emphasized astronomy as the ennobling science, Aristotle insisted that biology, including the study of even the lowliest organisms, is beautiful to one who understands natural causes.

2 The Celestial Worlds Discover'd, or, Conjectures concerning the Inhabitants, Plants and Productions of the Worlds in the Planets  Huygens, Christiaan (1698)

In this translation of Huygens’ Kosmotheoros, Huygens took up questions of the habitability of other planets and the existence of extraterrestrial life. These topics were also considered by Kepler, Wilkins and other popular writers.

2 The Philosopher of China  Confucius,  (1687)

Confucius lived in the early 5th century BCE, roughly contemporary with the Pythagoreans and Presocratic natural philosophers. Confucius taught: “Do not do to others what you do not want done to yourself,” an early version of the Golden Rule.

3 Heights of Theology  Aquinas, Thomas (1496)

Wormholes appear on the cover of this otherwise well-preserved medieval masterwork of theology. Aquinas represents the medieval synthesis of science and religion. He endorsed the principle of accommodation.

3 Works in Greek, vol. 2  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

4 Works in Greek, vol 3 pt. A  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

4 The Astronomical Balance  Grassi, Oratio (1619)

In this book, Grassi responded to the criticism of Guiducci/Galileo. Comets seemed to provide a test of the Copernican and Tychonic systems: if the Earth were moving, then with three comets, one might have hoped to see at least one of them retrograding.

4 Pliny, “Natural History”  Pliny the Elder,  (1601)

Pliny’s Natural History defined the scope and breadth of the field of natural history. Natural history meant the description (or “historia”) of nature, as opposed to explaining its causes (or “natural philosophy”). Pliny died in 79 CE while investigating the eruption of Mt.

5 Works in Greek, vol 3 pt. B  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

5 Natural Questions  Seneca,  (1522)

Seneca’s Natural Questions covered a similar scope of subject matter as Aristotle’s Meteorology. Seneca differed from Aristotle by insisting that even sublunar phenomena follow the same natural laws and have the same intelligibility as the rest of the universe.

6 Yin-Yang medallion (1960)

Yin and yang, a recurring motif in traditional Chinese thought, express the idea of the interconnectedness of opposites. Phenomena which appear as dualities to us, such as darkness and light, or high and low tides, will turn out to be interdependent and profoundly related.

6 The Assayer, early state  Galileo ,   (1623)

The crest of the Barberini family, showing three busy bees, appears at the top of the frontispiece. Galileo’s supporter, Cardinal Maffeo Barberini, had become Pope Urban VIII. The election of Barberini seemed to assure Galileo of support at the highest level in the Church.

6 Works in Greek, vol. 4  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

6 Letter on the Pythagorean and Copernican Opinion on the Motion of the Earth and Stability of the Sun  Foscarini, Paolo (1635)

The Carmelite theologian Foscarini defended Copernicanism as compatible with Scripture in this open letter, originally printed in Naples in 1615. Foscarini employed arguments similar to Galileo’s own Letter to the Grand Duchess Christina, penned in the same year.

7 Treatise on Fossil Mineral Wood  Stelluti, Francesco (1637)

The Academy of the Lynx emblem appears prominently on this title page. Although Stelluti once believed that fossils resembling wood originated from buried tree trunks, Cesi persuaded him otherwise.

7 The Assayer, later state  Galileo ,   (1623)

Although Galileo eloquently championed mathematical methods in science, the main target of his wit and sarcasm in The Assayer was Grassi, a fellow astronomer, whose mathematical methods proved that comets move above the Moon.

7 Works in Greek, vol. 5  Aristotle,  (1495-1498)

In a work entitled “On the Universe,” Aristotle argued that a 5th element, called ether or the quintessence, composes the celestial spheres that naturally rotate in place above the region where the four lower elements mix together beneath the Moon.

7 Dialogue on the Two Chief Systems of the World  Galileo,  (1632)

Featuring Galileo's Handwriting. This is Galileo’s witty and entertaining dialogue in defense of Copernicus. In the frontispiece, Aristotle and Ptolemy hold an Earth-centered armillary sphere (left). Copernicus holds a Sun-centered model of the universe (right).

7 The Reformed Heaven  Bruno, Giordano (1750)

This work contains a survey of the constellations and a cosmological dialogue, Lo Spaccio de la Bestia Trionfante (The Expulsion of the Triumphant Beast, 1584). Bruno, a Dominican astrologer and philosopher, affirmed that the universe is infinite, having no center.

8 On the Sphere, 1511  Proclus,  (1511)

This work was attributed to Proclus (5th century), one of the most important Neoplatonic philosophers of late antiquity. It became one of the most popular introductions to astronomy during the Italian Renaissance, appearing in more than 70 16th-century editions.

8 Complete Works  Brahe, Tycho (1648)

In De mundi aetherei (1588), Tycho reported that the comet of 1577 displayed no detectable parallax and thus moved, contrary to Aristotle, in the regions of the heavens beyond the Moon, passing through multiple celestial spheres. The ancient solid spheres melted.

8 Progress and the Hunter’s Lamp of Logical Methods  Bruno, Giordano (1587)

In this work, Bruno advocated a technique for discovery through pure thought, influenced by the methodology of Raymond Lull. This volume also contains the first printing of Bruno’s Examination of Forms (1588).

8 On Meteorology  Descartes, René (1637)

This essay on meteorology contains Descartes’ explanation of the optics of the rainbow and his law of refraction. Descartes’ ambitious aim was to produce a new body of writings that would completely displace the Aristotelian corpus.

9 The Shield-Bearer for Tycho Brahe  Kepler, Johann (1625)

In his second and last contribution to the “Controversy over the Comets,” Kepler stepped in as a “shield-bearer” to defend Tycho from Galileo’s attacks.

10 A Comparison of the Weights for The Astronomical Balance and the Small Scale   Grassi, Oratio (1627)

The Jesuit astronomers who had celebrated Galileo’s telescopic discoveries during his visit to Rome in 1611 now felt estranged by the biting satire of the The Assayer. The controversy concluded with this final reply. Both comets and cosmic systems remained enigmas.

10 Celebrated Questions on the Book of Genesis  Marsenne, Marin (1623)

Commentaries on Genesis often served as scientific treatises or encyclopedias. Mersenne, a French theologian, astronomer, music theorist and scientific correspondent, addressed a wide range of issues in cosmology in this commentary.

10 Commentary on Aristotle’s Posterior Analytics  Philoponus,  (1504)

In the 6th century, the Greek physicist and theologian Philoponus constructed an anti-Aristotelian theory of motion. For Philoponus, an “impressed incorporeal motive force” explains the motion of a top, a projectile, and falling bodies.

12 The Anatomical Exercises of Dr. William Harvey  Harvey, William (1653)

Harvey’s discovery of the circulation of the blood, first time in English: Concluding a series of brilliant teachers and students at the medical school of Padua that included Vesalius, Colombo, and Acquapendente (a friend of Galileo’s), Harvey marshaled a combination of quantitative,...

12 The New Almagest, part 1  Riccioli, Giambattista (1651)

The frontispiece of Riccioli’s treatise depicts not two, but three major systems of the world. The Ptolemaic system rests discarded (lower right corner) because of the phases of Venus and Mercury (upper left corner). All-seeing Argus looks on, holding a telescope.

13 On the Body, 1662  Descartes, René (1662)

The body in mechanical philosophy: Descartes applied the mechanical philosophy to every field of natural knowledge, including cosmology, meteorology, the Earth, astronomy and, in this book, the human body.

13 The New Almagest, part 2  Riccioli, Giambattista (1651)

The frontispiece of Riccioli’s treatise depicts not two, but three major systems of the world. The Ptolemaic system rests discarded (lower right corner) because of the phases of Venus and Mercury (upper left corner). All-seeing Argus looks on, holding a telescope.

14 On the Body, 1677  Descartes, René (1677)

The illustration of the heart in this French edition shows a different artistic style than the Latin edition.

14 Principles of Philosophy  Déscartes, René (1644)

In Descartes’ cosmology, each star lies at the center of a “vortex,” or gigantic pool of circulating fluid. Stars and vortices are mortal, passing into and out of existence.

14 The Three Spheres  Beati, Gabriele (1662)

Which of Kircher’s six world systems are compatible with Beati’s cosmic section? Despite Galileo’s rhetorical attempt to cast cosmological debate as a choice between two chief world systems, Beati’s cosmic section is neither Ptolemaic nor Copernican.

16 Mathematical Principles of Natural Philosophy, 1687  Newton, Isaac (1687)

The Copernican idea that the Earth moves as a planet required a thorough revision of physics. Galileo undertook this task in his Discourse on Two New Sciences, published 80 years after Copernicus.

18 An Account of a New Discovered Motion of the Fix’d Stars  Bradley, James (1729)

Direct observational proof of the motion of the Earth remained difficult to find, even as late as the generation of Isaac Newton.

19 On the Proper Motion of Fixed Stars  Bessel, Wilhelm

Scientific theories may be accepted on the basis of a weighing of many complex factors rather than a single determinative observation or crucial experiment. From antiquity, Copernicanism had been rejected due to a failure to observe stellar parallax.

20 Physical Demonstration of the Rotational Movement of the Earth  Foucault, Léon (1851)

The Foucault pendulum swings in a constant plane or direction, and thus reveals the rotation of the Earth turning underneath.

21 Physical Demonstration of the Rotational Movement of the Earth  Foucault, Léon (1851)

The Foucault pendulum swings in a constant plane or direction, and thus reveals the rotation of the Earth turning underneath.