OU Libraries logo

Scientific Instruments

Scientific Instruments

 

Exhibit items on the subject of scientific instruments.

Exhibit Items

The Moon  Nasmyth, James (1876)

Nasmyth, a Scottish engineer known for his invention of the steam hammer, combined an avid interest in astronomy and photography. Carpenter was an astronomer at the Greenwich Observatory. Together they constructed plaster models of the lunar surface.

On Bees  Stelluti, Francesco (1625)

In this poster-sized work, the first publication of observations made with a microscope, Cesi and Stelluti studied the anatomy of the bee. The text includes classical references to bees as well as new knowledge, integrated in a tabular outline.

The Optics of the Eye  Chérubin d’ Orléans,  (1671)

In this illustration, Chérubin d’Orléans adopted the lunar map of Hevelius. The putti are observing the Moon with telescopes equipped with the “pantograph,” a perspectival tool devised by d’Orléans.

On Microscopy  Hooke, Robert (1665)

Hooke’s Micrographia is the most remarkable visual treatise of 17th century microscopy. In describing the appearance of cork, Hooke coined the term “cell.” Hooke’s large fold-out plate of the flea is unforgettable.

Secrets of Nature  van Leeuwenhoek, Antonio (1695)

Many textbooks begin their list of early microscopists with Leeuwenhoek, who published most of his discoveries in the Philosophical Transactions of the Royal Society of London. This volume is an anthology of many of those articles. Leeuwenhoek’s microscope had only a single, powerful lens.

The New Micrographia  Griendel, Johann Francisco (1687)

Griendel’s Micrographia nova was the German counterpart to Hooke’s Micrographia (1665). Greindel improved the objective lens. Many of his illustrations are of the same creatures examined by Hooke.

The Curiosities of Perspective  Nicéron, Jean François (1663)

While visiting Florence, Niceron was shown a unique perspective drawing tool devised by the painter Cigoli, one of Galileo’s friends. He viewed examples of anamorphic drawing techniques and Alberti’s perspective boxes. All of these make an appearance in this treatise.

Antonio van Leeuwenhoek Microscope replica (2015)

The Boerhaave Museum holds several of Leeuwenhoek’s original microscopes, from which this replica was created.

Giuseppe Campani Microscope replica

This is a replica of a microscope that is very much like one of the microscopes Galileo might have created. Indeed, it was once believed to have been made by Galileo, but is now attributed to Campani.

Preliminary Discourse for Astronomy  Hevelius, Johann (1690)

In the Prodromus, Hevelius explained the instruments and methods used to produce the star catalog. Hevelius’ Gdansk observatory, “Stellaburg,” was the best in Europe until the later national observatories of France and Britain.

Map of the Moon  Hevelius, Johann (1647)

Accurate depiction of the topography of the Moon was accomplished by mid-century in this lunar atlas by Hevelius. It set a new standard for precision that remained unmatched for a century.

0 The Hevelius Sextant

0 A Planisphere containing the Celestial Constellations  Lacaille, Nicolas (1756)

0 Philosophical Collections  Hooke, Robert (1679)

This anthology includes letters to the Royal Society of London by various contributors, including Robert Hooke (1635-1703) and Antoni van Leeuwenhoek (1632-1723). Here it is opened to a letter from Leeuwenhoek, faced by four small microscopic vignettes.

0 Observations on living things, with curious microscopic studies  Bonanni, Philippo (1691)

0 Secrets of Nature, Continued  van Leeuwenhoek, Antonio (1697)

0 Natural History of Insects  Swammerdam, Jan (1758)

0 Essay on Refractive Lenses  Hartsoeker, Nicolas (1694)

0 Illustrated Microscopy, 1746  Adams, George (1746)

0 Illustrated Microscopy, 1747  Adams, George (1747)

0 Essays on the Microscope   Adams, George (1787)

Adams’ work remained in publication for decades helping generations of microscopists and hobbyists explore the unseen world.  

0 Culpeper Microscopes (40 cm, 30 cm)

0 Evenings at the Microscope  Gosse, Philip Henry (1884)

0 Kepler's Universe  Mitchell, Ron

0 Tellurian, Trippensee Planetarium Company (1908-1920)

1 The Book on Air  Hero of Alexandria,  (1575)

Once an altar is lighted, the temple doors open automatically. Hero fashioned all sorts of marvelous automata using steam, air pressure, hydraulics and falling weights. Devices included an automatic wine dispenser, siphons, garden fountains, engines, pumps, steam-powered toys, and magic tricks...

1 Conversation on Galileo’s Starry Messenger  Kepler, Johann (1611)

“I thank you because you were the first one, and practically the only one, to have complete faith in my assertions.” – Galileo In this public letter, Kepler expressed support for Galileo’s telescopic discoveries.

1 The Operations of the Geometrical and Military Compass, 1606  Galilei, Galileo (1606)

Featuring Galileo's Handwritting. Galileo dedicated the manual for his engineering compass to young Cosimo II de Medici, whom he had tutored in mathematics the previous summer.

1 The System of Saturn  Huygens, Christiaan (1659)

In this work, Huygens resolved the enigma of Saturn’s changing telescopic appearance by proposing that a ring surrounds Saturn at an angle, varying in visibility from the Earth.

2 Star Viewer  Schickard, William (1698)

Schickard, a friend of Kepler’s, designed this planisphere or “astroscopium” to calculate the positions of the stars for any day and hour of the year. Schickard also devised a calculating machine to produce astronomical tables according to Kepler’s laws.

2 Theater of the World  Gallucci, Giovanni Paolo (1588)

Gallucci, a Venetian scholar, was interested in astronomical instruments, both physical and on paper. The “Theater of the World” features a parade of rotating wheels, or “volvelles,” descendants of the astrolabe.

2 Astronomical Calendar, 1476  Regiomontanus,  (1476)

In this book, Regiomontanus predicted the positions of the Sun and Moon for 40 years. He designed a sundial to work independently of one’s latitude, and a volvelle, or circular dial, to locate the position and phase of the Moon according to date and time.

3 On Mathematics  Schott, Gaspar (1668)

In this mathematics textbook, Schott explained the rod-based calculating machine designed by his fellow Jesuit, Athanasius Kircher. The philosopher Leibniz also created a calculating machine, described in 1666, which he offered to the emperor of China.

3 The Climactic Year  Hevelius, Johann (1685)

In astrology, a “climactic year” marks a turning point, a moment of greatest risk. The preface explains that 1679 was Hevelius’ climactic year, for in that year his observatory burned. Fire destroyed manuscripts, books and instruments, including his sextant. He was 67 years old.

3 School of the Stars  Capra, Baldessar (1606)

Galileo kept the design of his engineering compass carefully guarded, yet a dispute over intellectual property rights ensued. In 1607, Baldassar Capra published under his own name a Latin translation of Galileo's Compasso, including instructions for making the instrument.

3 Representing the Heavens  Coronelli, Vincenzo (1693)

The tiny size of a volume by Coronelli belies its historical importance: in this Epitome, Coronelli explained how to use celestial and terrestrial globes, and his techniques for constructing them.

3 Observations in Bologna of the rotation of Mars around its axis  Cassini, Giovanni Domenico (1666)

These 3 broadsides, issued approximately 2 weeks apart, contain the first detailed illustrations of Mars.

3 Astronomical Calendar, 1518  Stoeffler, Johann (1518)

A “calendarium” contains predictions of the positions of the Sun and Moon for several decades into the future. Regiomontanus calculated their positions for 40 years beginning in 1476; Stoeffler for 62 years from 1518-1579 inclusive.

4 Treatise on the Genuine Use of the Globes  Metius, Adriaan (1624)

Although Galileo rushed to print his telescopic observations, he did not invent the telescope. Jacob Metius was one of several Dutchmen with a claim to the invention of the telescope. This book by Jacob’s brother mentions Jacob’s telescopic observations of the satellites of Jupiter.

4 Defense Against the Calumnies and Impostures of Baldessar Capra!  Galileo,  (1607)

Featuring Galileo's Handwriting. Galileo published his second printed book to establish his priority rights and to inform Cosimo de Medici of the legal judgment against Capra. This copy, bound with the Compasso, is inscribed by Galileo to a Florentine physician.

5 Description and Use of an Instrument, Called the Double Scale of Proportion  Partridge, Seth (1692)

After a century of calculating instrument innovation, Partridge created the slide-rule. Edmund Gunter designed a logarithmic scale in 1620. William Oughtred placed two logarithmic scales side-by-side to perform multiplication and division in 1630.

5 Celestial Atlas,1776  Flamsteed, John (1776)

A globe maker for the French royal family, J. Fortin, prepared this edition of Flamsteed’s celestial atlas in a much reduced format. Flamsteed was the first Astronomer Royal, who oversaw the building of the Greenwich Observatory. Newton relied upon Flamsteed’s star positions in his Principia.

5 The Operations of the Geometrical and Military Compass, 1635  Galilei, Galileo (1635)

After Capra, the design of Galileo’s compass became widely known. Later editions included illustrations of Galileo’s instrument.

6 Atlas of the Stars  Bode, Johann (1782)

Bode created a new constellation, Herschels Teleskop, near Auriga, to honor William Herschel’s discovery of Uranus in 1781. This Bode-Fortin-Flamsteed atlas is a 1782 German edition of Fortin’s 1776 reprinting of Flamsteed’s 1729 atlas.

6 Essays on Natural Experiences, 1666  Accademia del Cimento,  (1666)

The Academy of the Lynx (Accademia dei Lincei) dissolved after the death of its founder, Prince Federigo Cesi. In its place, Grand Duke Ferdinand II established the Academy of Experiment in Florence, which carried further the research program of Galileo.

6 Instruments for the Restoration of Astronomy  Brahe, Tycho (1602)

For two decades, Tycho and his assistants at Uraniborg produced thousands of astronomical observations of unprecedented quality. Tycho’s large-scale observing instruments, together with sophisticated new error correction techniques, increased observational precision by a factor of twenty.

7 Memoirs... made in a late Journey through the Empire of China  Comte, Louis le (1698)

Le Comte, a French Jesuit sent in 1687 by Louis XIV to work in the Kangxi court, depicted the Beijing observatory at the end of Schall’s life.

7 Notes  Lovelace, Ada (1843)

These notes comprise one of the most important papers in the history of computing. Lovelace explained how Babbage’s “analytical engine,” if constructed, would amount to a programmable computer rather than merely a calculator.

7 The Realm of the Nebulae  Hubble, Edwin (1936)

Hubble’s investigations with the 100-inch Hooker Telescope at Mount Wilson observatory, overlooking Los Angeles, California, led to a dramatic expansion of the universe. For Hubble, the universe is not limited to the Milky Way galaxy.

7 Essays on Natural Experiences, 1667  Accademia del Cimento,  (1667)

The Academy transformed the thermoscope into the thermometer by adding a graduated scale (which had been done by Galileo and his friends) and by sealing the tube to make it independent of air pressure.

7 Letters  Kepler, Johann (1672 & 1673)

Kepler’s major correspondence is gathered here in two rare volumes bound together. Bernegger, one of Kepler’s closest friends, also published Latin translations of Galileo’s Compass, Letter to the Grand Duchess Christina, and Dialogue on the Two Chief Systems of the World.

8 Commentary on the Canon of Ibn Sina (Avicenna)  Santorio, Santorio (1646)

Galileo’s physics, applied to medicine: Santorio Santorio (also known as Sanctorio or Sanctorius) practiced medicine in Padua, in the Venetian Republic.

8 Beijing: History and Description  Favier, Pierre-Marie-Alphonse (1897)

Photographs of the Beijing observatory show what remained of the astronomical instruments in 1897.

8 On the Use and Fabrication of the Astrolabe  Danti, Egnazio (1578)

Danti was a cosmographer in the court of Cosimo I de Medici. Visitors to Florence today may view his stunning maps of the world in the Hall of Maps of the Palazzo Vecchio, as well as armillary spheres and a quadrant he mounted on the facade of the church of Santa Maria Novella.

8 Treatise on the Measuring Stick  Orsini, Latino (1583)

This book is Orsini’s manual for using a measuring stick instrument which he designed and called a “radio latino.” With its changing angles, multiple sight lines, and various scales, it was useful for making astronomical measurements, surveying uneven topography, measuring a cannon’s bore or...

8 Essays on Natural Experiences, 1701  Accademia del Cimento,  (1701)

The Academy crafted a hygrometer to measure humidity in the air. They improved the barometer, and conducted many experiments with air pressure. The Academy also experimented with light and phosphorescence, radiant heat, the velocity of sound and many other topics.

9 Introduction to the Astrolabe  Lansbergen, Philip van (1635)

Astronomers use astrolabes for dozens of astronomical operations including telling time by the Sun or stars and determining the positions of planets.

9 Treatise on the Equilibrium of Fluids  Pascal, Blaise (1663)

To clarify the ability of the barometer to measure the pressure of the atmosphere, Pascal left a barometer at a low elevation in the town of Clermont, in Auvergne, while taking another with him as he climbed the Puy-de-Dôme.

9 The World of Jupiter  Mayr, Simon (1614)

With a telescope, Mayr observed the four satellites of Jupiter, accurately determining their periods of revolution. He named them Europa, Io, Ganymede and Callisto, names which are still used today. In this work Mayr also considered Tycho’s objection to Copernicus based upon star sizes.

10 On the Quadrant  Lansbergen, Philip van (1635)

Astronomers use quadrants and sextants to measure angular distances in the night sky, such as the angular divergence between a planet and the nearest bright star. One may also measure the height of the North Star above the horizon, which is equal to one’s latitude on the Earth.

10 Curious Technology  Schott, Gaspar (1664)

Schott was among the first to report the “Miracle of Magdeburg,” the sensational story of Otto von Guericke’s public demonstration of the reality of the vacuum. Von Guericke bolted two large hemispheres together, then evacuated the air inside them with his air pump.

11 The Star-Splitter  Frost, Robert (1923)

In a comical ballad called “The Star-Splitter,” Robert Frost described a man outdoors splitting firewood after the first frost of autumn: “You know Orion always comes up sideways.

11 New Experiments  von Guericke, Otto (1672)

In this work, von Guericke explained the design of his air pump and recounted additional experiments conducted with it. He employed the barometer to forecast the weather, and invented an electrostatic generator.

12 Description and Use of Both the Globes, the Armillary Sphere, and Orrery  Martin, Benjamin (ca. 1760)

This book explains how to use the terrestrial and celestial globes, an armillary sphere (which shows the movements of the sky), and an orrery (which models the motions of the planets). Martin operated an instrument shop in London.

12 The New Almagest, part 1  Riccioli, Giambattista (1651)

The frontispiece of Riccioli’s treatise depicts not two, but three major systems of the world. The Ptolemaic system rests discarded (lower right corner) because of the phases of Venus and Mercury (upper left corner). All-seeing Argus looks on, holding a telescope.

12 New Experiments Physico-Mechanicall, Touching the Spring of the Air  Boyle, Robert (1660)

Boyle, who heard of von Guericke’s experiments via Schott, retained Robert Hooke to construct a similar air pump for him. Boyle’s experiments supported his “corpuscular” view of matter, that air is comprised of particles in motion.

13 Opticks  Newton, Isaac (1704)

Newton’s contemporaries may have first heard of him through articles in the Philosophical Transactions of the Royal Society of London. There he reported his experiments with prisms on the nature of light and color in the atmosphere.

13 The New Almagest, part 2  Riccioli, Giambattista (1651)

The frontispiece of Riccioli’s treatise depicts not two, but three major systems of the world. The Ptolemaic system rests discarded (lower right corner) because of the phases of Venus and Mercury (upper left corner). All-seeing Argus looks on, holding a telescope.

15 Astronomy Explained upon Sir Isaac Newton's Principles  Ferguson, James (1809)

Ferguson’s books, orreries, clocks and mechanical devices were studied with interest by Benjamin Franklin, Thomas Paine and William Herschel, among others.

15 The Use of Celestial and Terrestrial Globes, and Spheres, according to the different Systems of the World  Bion, Nicolas (1710)

Even today, while we adopt the Copernican system, we still teach observational astronomy and navigation by the stars using the traditional geocentric instruments: nocturnal dials, celestial globes, and armillary spheres.

18 An Account of a New Discovered Motion of the Fix’d Stars  Bradley, James (1729)

Direct observational proof of the motion of the Earth remained difficult to find, even as late as the generation of Isaac Newton.

19 On the Proper Motion of Fixed Stars  Bessel, Wilhelm

Scientific theories may be accepted on the basis of a weighing of many complex factors rather than a single determinative observation or crucial experiment. From antiquity, Copernicanism had been rejected due to a failure to observe stellar parallax.

20 Physical Demonstration of the Rotational Movement of the Earth  Foucault, Léon (1851)

The Foucault pendulum swings in a constant plane or direction, and thus reveals the rotation of the Earth turning underneath.

21 Physical Demonstration of the Rotational Movement of the Earth  Foucault, Léon (1851)

The Foucault pendulum swings in a constant plane or direction, and thus reveals the rotation of the Earth turning underneath.